
Week 9 - Wednesday

 What did we talk about last time?
 Finished Internet layer
 Link layer
 Wireless
 Started threads

 Race conditions are a central problem with threads
 Thread scheduling is non-deterministic
 It's often impossible to predict when the statements from one thread

are going to be executed with respect to those in another thread
 If the statements modify the same memory, the results can be

inconsistent
 One of the most frustrating issues with race conditions is that

they can occur rarely
 This means that you can run your program 1,000 times with no

problems, only to crash badly on time 1,001

 The following are common causes of race conditions:
 Two or more threads trying to modify a global variable at the same

time
 One thread calls free() on data that another thread is using
 Thread A is using variables declared on the stack of Thread B, which

become invalid when Thread B terminates
 Two or more threads calls a non-thread-safe function at the same

time

 A critical section is a series of statements that must be executed
atomically to get the right result

 Atomic execution means that all the statements happen as if they
happened at once, without other statements from other threads
interfering

 Even statements that look atomic like i++ are actually several
different operations in assembly language

movq _globalvar(%rip), %rsi # copy from memory into %rsi register
addq $1, %rsi # increment the value in the register
movq %rsi, _globalvar(%rip) # store the result back into memory

 Consider two threads that share an int variable called
global that is initially set to 0:

 What are the largest and smallest values that global could
have after these threads run to completion?

for (int i = 0; i < 200; ++i)
++global;

Thread A

for (int j = 0; j < 300; ++j)
++global;

Thread B

 Many functions are thread safe, meaning that they can be
called by many threads at the same time and still give the
right answers

 Other functions are not thread safe
 The usual reason that functions are not thread safe is because

they contain static local variables
 Because these variables are shared by all threads, they can

become corrupted

 The rand() function isn't thread safe
 Internally, it keeps a value for the next random number
 If two threads call rand(), they won't get the sequence of

random numbers they're supposed to
 Strange, but it doesn't matter too much in this case since the

numbers are supposed to be random

SINGLE THREADED VERSION

TWO THREADS RUNNING (SPACING SHOWS EXECUTION ORDER)

int a = rand() % 5; // 3
int b = rand() % 5; // 0
int c = rand() % 5; // 1

int a = rand() % 5; // 3

int b = rand() % 5; // 1

int c = rand() % 5; // 2

int d = rand() % 5; // 0

int e = rand() % 5; // 4

 The strtok() function isn't thread safe
 This function is used to divide up a string by some delimiter
 The first time you call it, you give it the string you're trying to

divide
 For future calls, you call it with NULL, and it uses the location it's

at in the string you gave it before
char[] sentence = "bears beets Battlestar Galactica";
char* word = strtok (sentence, " ");
while (word != NULL)
{

printf ("%s\n", word); // Prints each word on a separate line
word = strtok (NULL, " ");

}

 As before, two threads, and the spacing shows execution
order

char[] sentence = "bears beets";
char* word = strtok (sentence, " ");
printf ("%s\n", word); // bears

word = strtok (NULL, " ");
printf ("%s\n", word); // streets

char[] phrase = "mean streets";
char* thing = strtok (phrase, " ");

Thread A Thread B

 We will spend quite bit of time in this class discussing tools that
can be used

 For now, be careful about not using non-thread safe functions
 Both rand() and strtok() have reentrant versions
 rand_r() and strtok_r()
 Instead of keeping data as static variables, the reentrant versions require

you to pass the current state back to them as an extra variable
 Slightly annoying but so much safer

 Reentrant functions are usually thread safe because they can be
interrupted

 Just as we could create a new process with fork(), there are libraries for
making new threads

 POSIX threads (also called pthreads) are perhaps the most widely used
thread library
 Windows (of course) has its own threading library, though people have built

POSIX-like libraries on top of it
 Key POSIX concepts
 Creating a thread starts it running
 A thread can exit, stopping its running
 Joining a thread means waiting for a thread to finish (and potentially getting its

result)
 We keep track of processes with an ID of type pid_t, but we keep track of

threads with an ID of type pthread_t

 Here are POSIX functions mapping to concepts from the previous slide

 Create a new thread (not as bad as it looks)

 Exit from the current thread (giving a pointer to the result, if any)

 Join a thread (getting a pointer to its result, if any)

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

void pthread_exit (void *value_ptr);

void pthread_join (pthread_t thread, void *value_ptr);

 Creating a thread is the most complicated function, partly
because it takes a function pointer and potentially arguments

 thread is a pointer to a pthread_t that will get filled in with the
thread's ID
 attr is a pointer to possible thread attributes (often left NULL)
 start_routine is a pointer to a function that takes a void* and

returns a void*
 arg is a pointer to arguments, NULL if no arguments needed

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

#include <stdio.h>
#include <pthread.h> // POSIX thread library
#include <assert.h>

void *
start_thread (void *args) // Function to start thread with
{
printf ("Hello from thread!\n");
pthread_exit (NULL);

}

int
main (int argc, char **argv)
{
pthread_t child_thread;

// Create new thread with function start_thread
assert (pthread_create (&child_thread, NULL, start_thread, NULL) == 0);

pthread_join (child_thread, NULL); // Wait for other thread to finish
pthread_exit (NULL); // main() exits like any other thread

}

 Passing in a garbage pthread_t* instead of the address of
a real pthread_t

 Calling the threading function (with parentheses) instead of
passing a function pointer in

 Joining with a pthread_t* instead of a pthread_t

pthread_t *thread; // No!

pthread_create (thread, NULL, start (), NULL); // No!

pthread_join (thread, NULL); // No!

 Normal threads are attached, meaning that they can be joined
 It's possible to create detached threads, which can never be

joined
 By passing in a pthread_attr_t struct with the right options
 Or by calling pthread_detach() on a thread's ID

 Note that you can get your own ID by calling the
pthread_self() function

pthread_t pthread_self (void);

 Passing arguments to threads is tricky
 Passing addresses to objects on the stack is dangerous in case the

function creating the threads returns
 Passing pointers to the same object to multiple threads can cause

problems if they fight over it
 There are no timing guarantees over which thread will run when

 On most modern machines, a pointer is either 32 bits or 64 bits
 An int is usually 32 bits
 We can cast an int to a pointer and pass that to the thread
 The thread will then cast the pointer back to an int
 Since the size of an int is almost always less than a pointer, we

don't lose any information
 It's icky, but it allows us to pass simple values like a char, short,

or int
 Both floating-point types are harder since they have to be tricked into

behaving like integers (which pointers fundamentally are)
 And double is risky since it needs a 64-bit pointer to hold it all

void * child_thread (void *args)
{
int value = (int) args; // Now, I pretend it's an int!
printf ("I'm a thread with value: %d\n", value);
pthread_exit (NULL);

}

int main (int argc, char **argv)
{
pthread_t threads[10]; // Array to hold thread IDs

// Start up those threads, pretending ints are pointers
for (int i = 0; i < 10; i++)
pthread_create (&threads[i], NULL, child_thread, (void*)i);

for (int i = 0; i < 10; i++)
pthread_join(threads[i], NULL);

pthread_exit (NULL);
}

 To pass multiple arguments, they're often grouped in a struct
 Remember that threads all have their own stacks
 Thus, we need to pass in a struct that has been dynamically

allocated on the heap (which is shared)
 Also, any pointers that struct contains should point at memory that

isn't on the stack

struct thread_args
{
int value;
const char* string;

};

int main (int argc, char **argv)
{
pthread_t thread;
struct thread_args* args = malloc(sizeof(struct thread_args));
args->value = 42;
args->string = "wombat";

// Thread casts void* to struct thread_args* when it gets it
pthread_create (&thread, NULL, child_thread, args);

pthread_join(thread, NULL);
pthread_exit (NULL);

}

 A common model for threads is for them to go and perform
some work

 After the work is done, they need to give back the answer
 There are three ways to do this:

1. Store the answer back into the dynamically allocated struct passed
in for its arguments

2. Use the hack like before to return a "pointer" through the join that's
actually an int

3. Return a pointer through the join to a dynamically allocated struct
containing the answer

struct numbers {
int a;
int b;
int sum;

};

void *sum_thread (void *args)
{
struct numbers *values = (struct numbers*)args;
values->sum = values->a + values->b;
pthread_exit (NULL);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers *values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, sum_thread, values);
pthread_join(child, NULL);
printf ("Sum: %d\n", values->sum);
free (values);
pthread_exit (NULL);

}

struct numbers {
int a;
int b;

};

void *sum_thread (void *args)
{
struct numbers *values = (struct numbers*)args;
int sum = values->a + values->b;
free (values);
pthread_exit ((void*)sum);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers *values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, sum_thread, values);
void *sum = NULL;
pthread_join(child, &sum);
printf ("Sum: %d\n", (int) sum);
pthread_exit (NULL);

}

struct numbers {
int a;
int b;

};

void *calculator (void *args)
{
struct numbers* values = (struct numbers*)args;
struct numbers* answers = malloc(sizeof(result));
answers->a = values->a + values->b;
answers->b = values->a - values->b;
free (values);
pthread_exit (answers);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers *values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, calculator, values);
struct numbers *answers = NULL;
pthread_join(child, (void **)&answers);
printf ("Sum: %d\nDifference: %d\n", answers->a, answers->b);
free (answers);
pthread_exit (NULL);

}

 Review for Exam 2

 Exam 2 on Monday!
 Finish Assignment 5
 Due Friday by midnight!

 Read sections 6.6, 6.8, 7.1, and 7.2

	COMP 3400
	Last time
	Questions?
	Assignment 5
	Race Conditions
	Race conditions
	Race condition scenarios
	Critical sections
	Incrementing variables
	Thread safety
	Non-thread safe function (innocent version)
	Example with rand()
	Non-thread safe function (terrifying version)
	Example with strtok()
	How you can prevent race conditions
	POSIX Threads
	POSIX threads
	POSIX thread functions
	Creating a thread
	Simple threading example
	Common mistakes
	Attached and detached threads
	Passing arguments
	A useful hack
	A thread function that uses a pointer like an int
	Passing multiple arguments to a thread
	Multiple argument example
	Returning values from threads
	Returning in the args struct
	Returning a "pointer" that's an int
	Returning a pointer to a dynamically allocated struct
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

