
Week 9 - Wednesday

 What did we talk about last time?
 Finished Internet layer
 Link layer
 Wireless
 Started threads

 Race conditions are a central problem with threads
 Thread scheduling is non-deterministic
 It's often impossible to predict when the statements from one thread

are going to be executed with respect to those in another thread
 If the statements modify the same memory, the results can be

inconsistent
 One of the most frustrating issues with race conditions is that

they can occur rarely
 This means that you can run your program 1,000 times with no

problems, only to crash badly on time 1,001

 The following are common causes of race conditions:
 Two or more threads trying to modify a global variable at the same

time
 One thread calls free() on data that another thread is using
 Thread A is using variables declared on the stack of Thread B, which

become invalid when Thread B terminates
 Two or more threads calls a non-thread-safe function at the same

time

 A critical section is a series of statements that must be executed
atomically to get the right result

 Atomic execution means that all the statements happen as if they
happened at once, without other statements from other threads
interfering

 Even statements that look atomic like i++ are actually several
different operations in assembly language

movq _globalvar(%rip), %rsi # copy from memory into %rsi register
addq $1, %rsi # increment the value in the register
movq %rsi, _globalvar(%rip) # store the result back into memory

 Consider two threads that share an int variable called
global that is initially set to 0:

 What are the largest and smallest values that global could
have after these threads run to completion?

for (int i = 0; i < 200; ++i)
++global;

Thread A

for (int j = 0; j < 300; ++j)
++global;

Thread B

 Many functions are thread safe, meaning that they can be
called by many threads at the same time and still give the
right answers

 Other functions are not thread safe
 The usual reason that functions are not thread safe is because

they contain static local variables
 Because these variables are shared by all threads, they can

become corrupted

 The rand() function isn't thread safe
 Internally, it keeps a value for the next random number
 If two threads call rand(), they won't get the sequence of

random numbers they're supposed to
 Strange, but it doesn't matter too much in this case since the

numbers are supposed to be random

SINGLE THREADED VERSION

TWO THREADS RUNNING (SPACING SHOWS EXECUTION ORDER)

int a = rand() % 5; // 3
int b = rand() % 5; // 0
int c = rand() % 5; // 1

int a = rand() % 5; // 3

int b = rand() % 5; // 1

int c = rand() % 5; // 2

int d = rand() % 5; // 0

int e = rand() % 5; // 4

 The strtok() function isn't thread safe
 This function is used to divide up a string by some delimiter
 The first time you call it, you give it the string you're trying to

divide
 For future calls, you call it with NULL, and it uses the location it's

at in the string you gave it before
char[] sentence = "bears beets Battlestar Galactica";
char* word = strtok (sentence, " ");
while (word != NULL)
{

printf ("%s\n", word); // Prints each word on a separate line
word = strtok (NULL, " ");

}

 As before, two threads, and the spacing shows execution
order

char[] sentence = "bears beets";
char* word = strtok (sentence, " ");
printf ("%s\n", word); // bears

word = strtok (NULL, " ");
printf ("%s\n", word); // streets

char[] phrase = "mean streets";
char* thing = strtok (phrase, " ");

Thread A Thread B

 We will spend quite bit of time in this class discussing tools that
can be used

 For now, be careful about not using non-thread safe functions
 Both rand() and strtok() have reentrant versions
 rand_r() and strtok_r()
 Instead of keeping data as static variables, the reentrant versions require

you to pass the current state back to them as an extra variable
 Slightly annoying but so much safer

 Reentrant functions are usually thread safe because they can be
interrupted

 Just as we could create a new process with fork(), there are libraries for
making new threads

 POSIX threads (also called pthreads) are perhaps the most widely used
thread library
 Windows (of course) has its own threading library, though people have built

POSIX-like libraries on top of it
 Key POSIX concepts
 Creating a thread starts it running
 A thread can exit, stopping its running
 Joining a thread means waiting for a thread to finish (and potentially getting its

result)
 We keep track of processes with an ID of type pid_t, but we keep track of

threads with an ID of type pthread_t

 Here are POSIX functions mapping to concepts from the previous slide

 Create a new thread (not as bad as it looks)

 Exit from the current thread (giving a pointer to the result, if any)

 Join a thread (getting a pointer to its result, if any)

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

void pthread_exit (void *value_ptr);

void pthread_join (pthread_t thread, void *value_ptr);

 Creating a thread is the most complicated function, partly
because it takes a function pointer and potentially arguments

 thread is a pointer to a pthread_t that will get filled in with the
thread's ID
 attr is a pointer to possible thread attributes (often left NULL)
 start_routine is a pointer to a function that takes a void* and

returns a void*
 arg is a pointer to arguments, NULL if no arguments needed

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

#include <stdio.h>
#include <pthread.h> // POSIX thread library
#include <assert.h>

void *
start_thread (void *args) // Function to start thread with
{
printf ("Hello from thread!\n");
pthread_exit (NULL);

}

int
main (int argc, char **argv)
{
pthread_t child_thread;

// Create new thread with function start_thread
assert (pthread_create (&child_thread, NULL, start_thread, NULL) == 0);

pthread_join (child_thread, NULL); // Wait for other thread to finish
pthread_exit (NULL); // main() exits like any other thread

}

 Passing in a garbage pthread_t* instead of the address of
a real pthread_t

 Calling the threading function (with parentheses) instead of
passing a function pointer in

 Joining with a pthread_t* instead of a pthread_t

pthread_t *thread; // No!

pthread_create (thread, NULL, start (), NULL); // No!

pthread_join (thread, NULL); // No!

 Normal threads are attached, meaning that they can be joined
 It's possible to create detached threads, which can never be

joined
 By passing in a pthread_attr_t struct with the right options
 Or by calling pthread_detach() on a thread's ID

 Note that you can get your own ID by calling the
pthread_self() function

pthread_t pthread_self (void);

 Passing arguments to threads is tricky
 Passing addresses to objects on the stack is dangerous in case the

function creating the threads returns
 Passing pointers to the same object to multiple threads can cause

problems if they fight over it
 There are no timing guarantees over which thread will run when

 On most modern machines, a pointer is either 32 bits or 64 bits
 An int is usually 32 bits
 We can cast an int to a pointer and pass that to the thread
 The thread will then cast the pointer back to an int
 Since the size of an int is almost always less than a pointer, we

don't lose any information
 It's icky, but it allows us to pass simple values like a char, short,

or int
 Both floating-point types are harder since they have to be tricked into

behaving like integers (which pointers fundamentally are)
 And double is risky since it needs a 64-bit pointer to hold it all

void * child_thread (void *args)
{
int value = (int) args; // Now, I pretend it's an int!
printf ("I'm a thread with value: %d\n", value);
pthread_exit (NULL);

}

int main (int argc, char **argv)
{
pthread_t threads[10]; // Array to hold thread IDs

// Start up those threads, pretending ints are pointers
for (int i = 0; i < 10; i++)
pthread_create (&threads[i], NULL, child_thread, (void*)i);

for (int i = 0; i < 10; i++)
pthread_join(threads[i], NULL);

pthread_exit (NULL);
}

 To pass multiple arguments, they're often grouped in a struct
 Remember that threads all have their own stacks
 Thus, we need to pass in a struct that has been dynamically

allocated on the heap (which is shared)
 Also, any pointers that struct contains should point at memory that

isn't on the stack

struct thread_args
{
int value;
const char* string;

};

int main (int argc, char **argv)
{
pthread_t thread;
struct thread_args* args = malloc(sizeof(struct thread_args));
args->value = 42;
args->string = "wombat";

// Thread casts void* to struct thread_args* when it gets it
pthread_create (&thread, NULL, child_thread, args);

pthread_join(thread, NULL);
pthread_exit (NULL);

}

 A common model for threads is for them to go and perform
some work

 After the work is done, they need to give back the answer
 There are three ways to do this:

1. Store the answer back into the dynamically allocated struct passed
in for its arguments

2. Use the hack like before to return a "pointer" through the join that's
actually an int

3. Return a pointer through the join to a dynamically allocated struct
containing the answer

struct numbers {
int a;
int b;
int sum;

};

void *sum_thread (void *args)
{
struct numbers *values = (struct numbers*)args;
values->sum = values->a + values->b;
pthread_exit (NULL);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers *values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, sum_thread, values);
pthread_join(child, NULL);
printf ("Sum: %d\n", values->sum);
free (values);
pthread_exit (NULL);

}

struct numbers {
int a;
int b;

};

void *sum_thread (void *args)
{
struct numbers *values = (struct numbers*)args;
int sum = values->a + values->b;
free (values);
pthread_exit ((void*)sum);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers *values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, sum_thread, values);
void *sum = NULL;
pthread_join(child, &sum);
printf ("Sum: %d\n", (int) sum);
pthread_exit (NULL);

}

struct numbers {
int a;
int b;

};

void *calculator (void *args)
{
struct numbers* values = (struct numbers*)args;
struct numbers* answers = malloc(sizeof(result));
answers->a = values->a + values->b;
answers->b = values->a - values->b;
free (values);
pthread_exit (answers);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers *values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, calculator, values);
struct numbers *answers = NULL;
pthread_join(child, (void **)&answers);
printf ("Sum: %d\nDifference: %d\n", answers->a, answers->b);
free (answers);
pthread_exit (NULL);

}

 Review for Exam 2

 Exam 2 on Monday!
 Finish Assignment 5
 Due Friday by midnight!

 Read sections 6.6, 6.8, 7.1, and 7.2

	COMP 3400
	Last time
	Questions?
	Assignment 5
	Race Conditions
	Race conditions
	Race condition scenarios
	Critical sections
	Incrementing variables
	Thread safety
	Non-thread safe function (innocent version)
	Example with rand()
	Non-thread safe function (terrifying version)
	Example with strtok()
	How you can prevent race conditions
	POSIX Threads
	POSIX threads
	POSIX thread functions
	Creating a thread
	Simple threading example
	Common mistakes
	Attached and detached threads
	Passing arguments
	A useful hack
	A thread function that uses a pointer like an int
	Passing multiple arguments to a thread
	Multiple argument example
	Returning values from threads
	Returning in the args struct
	Returning a "pointer" that's an int
	Returning a pointer to a dynamically allocated struct
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

